

Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-wave Infrared Applications

Presenter: Ashok K. Sood

Ashok K. Sood and John Zeller

Magnolia Optical Technologies Inc., 52-B Cummings Park, Suite 314, Woburn, MA

Samiran Ganguly and Avik W. Ghosh

Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA

Parminder Ghuman and Sachidananda Babu

NASA Earth Science Technology Office, Greenbelt, MD

Nibir K. Dhar

U.S. Army C51SR Center, Night Vision & Electronic Sensors Directorate, Fort Belvoir, VA

Overview of Technology and Applications

- High performance detector technology being developed for sensing over mid-wave infrared (MWIR) band for NASA Earth Science applications.
- The graphene-based HgCdTe detector technology combines the best of both materials, enabling higher MWIR (2-5 μm) detection performance compared to photodetectors using only HgCdTe.
- Room temperature operation of HgCdTe-based detectors and arrays can provide significantly reduced size, weight, power and cost (SWaP-C) for MWIR sensing applications such as remote sensing and earth observation, e.g., in smaller satellite platforms.

HgCdTe-based Graphene-enhanced MWIR Detector

HgCdTe graphene heterostructure based IR photodetector design

- HgCdTe has shown promise for development of MWIR detectors with improvements in carrier mobility and lifetime.
- In addition, HgCdTe layers can be grown using molecular-beam epitaxy (MBE), which yields greater precision in deposition of detector material structures leading to improved electrooptical / infrared performance.

MWIR Detector Material Structure

Graphene-HgCdTe detector structure composed of three principle layers:

1. Gate (Si/CdTe):

 Si layer functioning as gate terminal provides electrical field aiding carrier transport

2. Absorber (HgCdTe):

Active optical layer where carrier photogeneration occurs

3. Channel (graphene):

 High mobility, low noise graphene channel transfers photogenerated carriers to electrical readout

MWIR Detector Operating Principle

1. Carrier generation and separation:

 Incident IR photons transmitted into HgCdTe absorber produce electron-hole pairs, or excitons

2. Carrier transport and injection:

 Carriers then transported through absorber and injected into graphene

3. Carrier transport in graphene channel:

 Injected carriers transported to and collected by readout integrated circuit (ROIC)

Summary: Graphene-HgCdTe MWIR Detector Technology

- HgCdTe-graphene MWIR detector technology is being developed for NASA Earth Science applications, combining best of both materials.
- Improvements in carrier mobility and lifetime in HgCdTe enable enhanced IR sensing performance.
- Demonstrate high performance HgCdTe-graphene-based room temperature MWIR (2-5 µm) detectors and FPAs with reduced size, weight and power to benefit variety of NASA ESTO applications.